Crop Models for Decision Support

James W. Jones University of Florida

November 7, 2000

Crop Models in Research and Practice: A Symposium Honoring Professor Joe T. Ritchie American Society of Agronomy Annual Meeting

Crop Models for Decision Support

- Some Success Stories
 - Research and Technology Transfer (DSSAT)
 - Australian Applications using APSIM
 - Soybean Industry-Led Applications in the USA
 - Farmer-Led Applications in Argentina
 - Sugarcane Industry Model Uses in South AfricaOthers...
- Characteristics for Success
- Challenges
- Trends

Research & Technology Transfer

- USAID Project, 1983-93 (IBSNAT)
- DSSAT, Field-Scale DSS
 - Biophysical Models (Crop, Soil, Weather), 17 Crops
 - Risk Analysis (Biophysical and Economic)
 - Data Entry and Manipulation Tools
 - Utilities (graphics, data entry, management,...)
 - Crop Rotation Analyzer
- GIS Spatial Analysis Products
 - GIS-DSSAT Linkage for Region Impact Assessment
 - GIS Precision Agriculture Analyzer
- Targeted for use by Researchers

Research & Technology Transfer: Process

- Network of research users testing and applying models
- Network of developers contributing models, analysis tools, utilities, & data
- Minimum data set defined
- Standard formats, protocols for use, exchange
- Packagers, maintainers, distributors
- Trainers

DSSAT v3.5 screen showing DATA, MODELS and ANALYSES sections. Data must be entered for weather, soil, and management before performing analyses.

DSSAT Applications

- Climate Change Effects on Crop Production
- Optimize Management using Climate Predictions
- Interdisciplinary Research, Understand Interactions
- Diagnose Yield Gaps, Actual vs. Potential
- Optimize Irrigation Management
- Greenhouse Climate Control
- Quantify Pest Damage Effects on Production
- Yield Forecasting
- Precision Farming
- Land Use Planning, Linked with GIS

Impacts

- Adopted by ~ 1500 researchers in 90 countries
- Impacts of climate change; used in > 8 national & international projects worldwide
- Hundreds of applications independent of developers
- Spawned teams on every continent, still active
- Validated systems approach for technology transfer
- Still in use

🚟 APSIM shell - Brian Keating

🗖 🖬 🦻 😿 🗶 🖭 🔍 🏙 🖬 🖬 🖬 🖬 🗖 – 🗆 ×

Agricultural Production Systems Simulator

CSIRO Austrelia

OUSENSLAND

Copyright®1994 Agricultural Production Systems Research Unit

Crop, pasture and tree modules

Currently available

- Maize
- Wheat
- Barley
- Sorghum
- Sugarcane
- Sunflower
- Canola
- Chickpea
- Mungbean, Cowpea, Soybean
- Peanut
- Stylo pasture
- Lucerne
- Cotton (OzCot)*
- Native pasture (GRASP)
- Hemp
- Pigeonpea[@]

Under development

- Lentil / faba beans*
- GRAZPLAN*
- Millet @
- Lupin*
- FOREST #

* by arrangement with CSIRO Plant Industry

[@] in association with ICRISAT

In association with CSIRO L&W

From Brian Keating, 2000

APSIM Applications "Discussion Support System" Exploring what if questions:

- Which crop to sow?
- When to sow?
- How much N to apply?
- Which variety to sow?
- What density?
- Analysis of different starting conditions and seasonal forecasts

Private Sector: United Soybean Board

Goals

- Evaluate potential for practical, on-farm uses of soybean model for decision support
- Create a sustainable process for soybean production technology transfer, tailored to specific fields for optimizing profits
- Integrate new research results into the system, enhancing its capabilities in ways important to farmers
- Researchers in eight states

Early Experience

- Overly ambitious
- Under estimated time, complexities of process
- Conflicting objectives in design
- Changing computer technologies
- Changing model
- Failure of a first prototype
- "... Can researchers really do this?", But...
- Input from farmers, industry provided guidance for success

What We Did

- Packaged soybean model with data on soils, weather access to provide information for:
 - production planning (planting, weed control, variety, planting date, irrigation, profitability)
 - in-season decisions (irrigation, re-plant, yield forecast)
- Worked with farmers, farmer advisors, industry to refine design and test
- Independent evaluation by researchers in a number of states, and by industry
- Demonstrated value of approach for integrating new research aimed at specific problems identified by farmers

PCYield

- Simple, targeted, graphical user interface
- CROPGRO-Soybean simulation model
- Field-specific data management
- Internet access to weather data
- Production risk indicators
- In-season yield projections
 - Compare varieties, planting dates, re-plant decisions
 - Irrigation timing, yield impacts

All Needed Data Available

🗢 Estimating Weather Effec	ts		
<u>File Edit O</u> ther Analyses <u>H</u> el	p		
Selected Projection Date May 1	0, 1999	Last date in current weather file: May 8, 1999	i
Field Test F	ield		•
Soil: Silt Loa	am, Yield Rank = 1.0, D	Deep, Well-Drained, Moderate Slowly Permeable	
This Year's Planting Date April 1	5		
Normal Planting Date May 1			
This Year's Variety Matur	ty Group 4 Early 💌		D
Normal Variety Maturi	ty Group 4 🗾 💌	Substray role Caleman rug role.	
G N	on-Irrigated	んざ	
C Ir	rigated	C No Weather Forecast	ompute
			2.5

Targeting Research to Fill Gaps: Ability to analyze commercial varieties

Develop and test methods for estimating genetic coefficients of new varieties as they are released, using yield trial data

Targeting Research to Fill Gaps: Precision Agriculture The Problem:

- Yield varies considerably in many fields
- Spatially varying inputs and management may increase profits and reduce environmental risks

However:

- Quantifying what caused yield variability in a specific field is not easy
- How does one determine how to vary management across a field to optimize profit and meet other goals?

Working with Industry for Adoption

Characteristics of Successful Efforts

- Address issues of interest to targeted users (farmers, researchers, policy makers)
- Target users are clearly identified
- Direct involvement of users, intermediaries (input, service suppliers; extension, researchers)
- Interdisciplinary teams
- Easy access, use (usually by intermediaries, not farmers or policy makers themselves)
- Availability of necessary input data
- Open process for evaluation, discussion, design, use
- Model credibility, process to assess credibility

Challenges

- It is much more difficult than originally thought, even if models were perfect
- Models do not include many factors important for decision support
- It is difficult to include other factors, mainly due to difficulty of measuring inputs needed for those factors
- Are our current institutions adequate?
- Complexity of upgrading models
- Intellectual property rights
- Public private sector cooperation
- Documentation, maintenance

Trends

- Industry interest, capabilities
- Increasing capabilities for measuring inputs
- Modular model design, software engineering
- Balanced models with more components
- Flexible designs for tailoring model to specific needs
- Increasing student interest, contributions to components
- Long term investments in process
- More cooperation in model development, evaluation
- Internet tools

Thank You

Predicted Results

🕤 Computed Yields				
<u>F</u> ile <u>H</u> elp				
Date of Projection : May 10, 1999 Weather Forecast : 8 days Field : Test Field Soil : Silt Loam, Yield Rank = 1.0, Deep, This Year's Planting Date : April 15 Normal Planting Date : May 1	Well-Drained	d, Moderate S	lowly Permeable	
This Year's Variety : Maturity Group 4 Early Normal Variety : Maturity Group 4 Irrigated : No	Worst Case	Average	Best Case	
Projected Yield (bu/ac) Projected Maturity	35.0 Sep 16	59.6 Sep 21	70.3 Sep 25	
	Worst Case	Average	Best Case	
Normal Yield (bu/ac) Normal Maturity	31.5 Sep 23	57.8	68.2	
	Grap	h <u>G</u> rowth	Graph <u>R</u> ainfall	<u>0</u> K

Predicted growth: (1) Average of 10 years, (2) This year

ICASA

International Consortium for Agricultural System Applications

- Network of individuals and institutions
- Cooperating to facilitate development and application of systems approaches and tools
- To affect decisions & policies related to human interactions with natural resources

Implications: Need for Toolkit

- Models, Analysis Tools
 - Projective, Exploratory, Predictive
 - Different scales, purposes
 - Building block, modular approach
- Data
 - Minimum data set, indicators
 - Standard formats, protocols
 - Natural resources, Socioeconomic
- Purposes
 - Assessment
 - Management, Decision Aids
 - Conflict Resolution
- Wide distribution, easy access
- International effort, ICASA, CG Centers, etc.

Model-Based DSS Tools

Many are never accepted, used - Why?

- Process (failure to include users from the start)
- Ownership (N.I.H. principle)
- Impractical data requirements
- Wrong problem or inadequate scope
- Cost vs. benefit
- Naïve developers
- Naïve funding agencies

APSIM - Plug-in / Pull-out modularity

