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Problem Statement

Estimating daily runoff from little information such as daily precipitation and key soil
properties. Useful for functional-type crop & soil models (DSSAT, SALUS). Ease the
computational load in watershed-scale models linked to GIS.

Literature

1. The SCS curve number approach (USDA-SCS, 1985) was a simple, empirical method
to estimate daily runoff from daily precipitation. It ignored the change of infiltration rate
with time into the storm or the seasonal variability. Currently used in the DSSAT family
of models (Jones et al., 1986).

2. Chou (1990) proposed a time-to-ponding approach that relates the infiltration capacity
of the soil (and, indirectly, runoff) to time into the storm (Fig. 1). The amount that can
infiltrate during a storm interval is calculated. Precipitation that cannot infilirate, ponds.
When ponding exceeds the ponding capacity of the soil (a function of slope and
surface roughness), runoff is calculated. To implement this approach in DSSAT, two
simplifying assumptions were necessary: (1) Daily precipitation falls in one storm
starting at midnight;and (2) Curve A is an isosceles friangle (Gerakis and Ritchie,
1998). Seasonal changes to the shape of the storm are not considered. Simulation
can be improved if assumptions 1 & 2 are relaxed, i.e., hourly precipitation data are
used instead of assuming a storm shape. This is one of the two approaches to runoff
simulation used in SALUS, if hourly rainfall is available..
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Figure 1. The time-to-ponding approach to
infiltration. Curve A is the precipitation rate
vs. cumulative precipitation. Curve B is the
precipitation rate above which water ponds.
Ks is the matrix saturated hydraulic
conductivity of the top layer.

3. Another, more complex time-to-ponding approach is used by the WEPP model (Stone
etal., 1995). Infiltration is computed using a mechanistic implementation of the
Green-Ampt Mein-Larson model, and runoff is calculated as rainfall excess minus the
ponding capacity of the soil. The problem is high uncertainty in the inputs.

4. The Root Zone Water Quality Model (Ma et al., 1998) predicts infiltration with the
Green-Ampt equation. Too many inputs make this approach impractical for our
functional-type models.

5. Because many weather stations collect only daily precipitation, and because there are
lots of historical records of daily precipitation, the simplicity of the runoff curve
approach is very appealing. Watershed scale hydrological models with many cells or
overland flow elements can benefit from a simple, fast algorithm based on just daily
rainfall and key soil properties (Basso, 2000).

Objective

To replace the SCS curve number and the time-to-ponding approaches with a modified
runoff curve approach. Our improvement over the earlier SCS approach comes from
the realization that storm intensity in many locations varies throughout the year. So,
the same amount of rain may produce different runoff depending on time of the year.
This approach is used in SALUS when only daily rainfall is available.

Method

1. We assume that runoff is proportional to daily rainfall for a soil of a given ponding
capacity, antecedent water content, and macropore saturated hydraulic conductivity
(Fig. 2). Sensitivity analysis using Chou's time-to-ponding model showed that the
slope of the rainfall-runoff function is not sensitive to antecedent water content,
because only a thin layer of top sail is involved in the infiliration/runoff calculation
(percolation is simulated in another part of the model). We also assume that there is
an upper limit to ponding capacity that depends on the slope of the land and surface
roughness. So the only other factor to consider is macropore saturated hydraulic
conductivity (KsMacro).
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Figure 2. The dally rainfall vs. daily runoff
curve.

2. The slope of the rainfall-runoff curve (Fig. 2) primarily depends on KsMacro. We

assume that this slope is described by the model:

Runoff_Curve_Slope = exp (a KsMacro + b) =>
In (Runoff_Curve_Slope) = aKsMacro+ b
where KsMacro is the macropore saturated hydraulic conductivity, and a, b are estimation

[Eq. 1]

coefficients (Fig. 3).
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Figure 3. Slope of rainfall-runoff curve vs.
KsMacro

3. The slope of the runoff curve depends on the time of the year, because storm intensity
varies with season. Using up to 30 years of hourly rainfall data from the USA
(NOAA/NREL, 1993) and the time-to-ponding runoff model, we simulated the slopes of
several rainfall-runoff curves vs. KsMacro. Fig. 4 shows a set of these curves, one for
each month, for one location (note log scale on y axis). With linear regression we
obtain coefficient "a" from Eq. 1. Because coefficient "b" varies little and is not so
critical anyway, we take it as constant equal to -0.3.
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Figure 4. Logarithm of the slope of the
rainfall-runcff curve simulated for a range of
KsMacro.

4. Coefficient "a" (Eq. 1) is space-variable, too. We grouped similar values of the

coefficient by region: N. Central USA, the ocean coasts, the Southern states, and the
tropics (Puerto Rico and Hawaii). In every region, SALUS requires a set of 12 values,
one for each month. These are stored as a table in the weather database. There are
two ways to determine the array of the 12 coefficients:

5. If the area of interest is in the USA and territories, users can pick one of 230 weather

stations for which there are up to 30 years of continuous hourly rainfall data. A utility
program (NEAREST.EXE) can find the nearest weather station to the point of interest
from latitude and longitude. Utility programs REFORMAT.BAT, MAKEHOUR.BAT,

and HOUR2DAI.EXE clean up the data and convert them to DSSAT-friendly weather
files. Program PONDS0.EXE runs the time-to-ponding model to derive the array of 12
coefficients.

6. If the area of interest if outside the USA and territories, the coefficients can be

estimated from a time series of rainfall measured at short intervals. Fig. 5 is a plot of
cumulative rain height vs. cum. rain hours for one year. The curve has 12 segments,
one for each month. The slope of each segment is a function of the average storm
intensity for that month, so it should bear some relation to coefficient "a" of Eq. 1. We
plotted coefficient "a" against the slopes of the cumulative precipitation vs. cum.
precipitation time curve for several weather stations (Fig. 6).
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Figure 5. Cumulative precipitation vs.
cumulative precipitation time for one year.
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Figure 6. Approximating coefficient "a" from
the slope of cum. precipitation vs. cum.
precipitation time curve.

7. The KsMacro in Eq. 1 can be either measured, approximated from soil properties
(Suleiman and Ritchie, In press) or simply calibrated for best fit (Ma et al., 1998; Risse
et al., 1995a; Risse et al., 1995b; Stagnitti et al., 1992).

Calibration: Method

The simple runoff model was calibrated using the WEPP hillslope validation data set
(NSERL, 2000). The method is outlined in Fig. 7.
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Figure 7. Calibration with WEPP Hillslope Data Sets: Method.

Calibration: Results and Discussion

1. Risse et al. (1995a) used 2,500 fallow events for validation of WEPP, whereas the
data files posted on the internet (NSERL, 2000) contain only 1,150 events. Without
knowing the reasoning for this reduction, our analysis is not directly comparable.

2. There probably were errors in the WEPP hillslope validation data files. In Tifton, on 28

Oct. 1959, a 9.98 cm rain reportedly produced only 0.15 to 0.08 cm runoff. In
Pendleton, from 13 Feb. 1984 to 10 Apr. 1984 one plot produced no runoff, whereas
its replicate produced 8.51 cm runoft.

3. In most sites, the KsMacro as calibrated with our model is in the same order of

magnitude as the KsMacro calibrated by Risse et al. (1995a) using WEPP (Table 1).

Table 1. Companson of model pedormance using the saturated hydraulic conductivity calibraled by Risse & al. (1885) versus the KaMacro
calibrated using the simple model

WEFP Hillslope Latieds  Longiude Mearest Weather  Distance i S Bk Hisse  Hisss Cal Cal_ Cal.
Valdation Side Station (k) sand clay Density Ks! RMSE2 Ksd Max. HAMSES
Pond. #

Bethany, MO 40915 N 94902 W Kansas City, MO 121 27.8 200 1.40 835 0.83 11-16 a1 0.80
Castana, 1A 42004' N 95040° W Sioux Cily, 1A 60 7.1 235 1.45 593 1.23 31-38 o1 0.67
Ganeva, NY 42953 N 77901° W Rochester, NY 58 442 149 1.40 123 0.85 18 01 .84
Guthrie, CF 35924 W 97935 W Oklahoma City, OK 0 73z 749 1.48 4373 0.3 22.27 o1 0.72
Holly Springs, MS 34049 N 8926 W Memghis, TN 57 2.0 188 1.3¢ 113 0.8a 2-8 o1 0.88
Madizcn, S0 44902 N 97H O W Sioux Falls, 5D 62 7.0 322 1.2 374 1.15 23-32 a1 0.85
Morriz, MM 45035 N 95055 W Saint Cloud, MN 144 39.4 232 1.30 4236 0.68 54-85 a1 0.62
Pendlston, OH 45%41' N 121931° W Portland, OR 85 238.0 230 1.35 374 0.43 812 (14 ] 0.35
Prasgue e, ME 46°30' N 68900 W Caribou, ME 24 338137 .49 1118 0.69 10 o1 0.68
Tiftorn, GA Je2g N 83032 W Macon, GA 138 87.0 57 1.58 40.66 1.7 21 01 1.28
Walkinsville, GA 43932 N 83%06 W Athens, GA 51 6685 19.6 1.50 4741 1.07 17-20 0.1 0.74

15al hydralic condudivity calibrated by Risse et al. (1995)

2Hoat Mean Squars Error of the simple model when using Ks by Risse et al (1905)
Bdacropors saturated hydraulic conductivity calibrated using the smple modal
“aimum ponding capacty used for calibretion of the simple model

Soot Mean Sguars Error of the simple model when using Kz calibrated using the
simple model

4. A face-to-face comparison of our simple runoff model with WEPP would normally not
be possible because WEPP is not a standalone infiltration/runoff model but includes
other components for water balance, plant growth, residue decomposition, and sail
consolidation. Yet, because validation plots were continuous cultivated fallow, we
assume that the effect of the plant growth and residue decomposition components
were insignificant. We compare runoff estimates from our model, WEPP and the SCS
number approach in Tables 2 and 3. The values for WEPP and the SCS curve
number are taken from Risse et al. (1995a). Model Efficiency (ME) is defined as 1 -
[sum of squared deviations from observed] / [sum of squared deviations from the
meaff}]. Ec?la shows the 95% confidence intervals for predictions with our simple
runoff model.

Table 2 Pedormance stalistics of simple modsl. WEPE, and the 5C5 curve number for validation sites (svenl basis).

Simple Model WeFPP SC5 Curve
Mumber
Site Measured Average Average Model Average  Average Model Avarags Average Model
Avarags Aunalt Magnituds of  Efficiency Rurwaif Magritude EHiciency Rurwalf Magrilude EMiciency
Hurwolf Error of Error ol Error
Bethany, MO 1.84£1.57 164997 [ drd 1412156 052 0.82 1.00:1.41 0.66 0.7
Castana, 14 1.1540.85 1.18+0.55 [ R:T] 0.39 1.01+0.92 0.46 0.48 1.1841.00 0.55 010
Geneva, NY 0.7941.11 1.03:0.82 0E0 041 0.671.02 0.4 0.73 0.60:1.05 0.51 0.58
Guthrie, OK 1.0941.44 1.2841.00 sl 0.75 0.99:1.48 0.39 0.86 1.05+1.61 0.49 077
Holly Springs, MS 1.5211.75 1.8141.40 QES 075 1.4621.63 0.4 0.87 1.261.63 0.56 0.79
Madizon, S0 0811147 1.0420.60 &3 0.47 0712095 0.39 0.77 0.67:0.83 0.45 0.69
Maorriz, MM 0.59+0.71 0.57+0.39 045 022 04120668 o 0.59 0.87+1.04 0.81 -1.08
Pandleton, OH 0.32+0.33 0.270.21 026 012 0.22:03 0. 0.06 0.18:20.28 0.25 -0.33
Prasgue lle, ME 0.7841.00 0.03+0.65 055 0.52 0.48:0.7 0.42 0.45 0.48:0.81 0.56 -0.25
Tifton, GA 1.8141.723 2.00+1.20 088 Qudd 1.7821.64 o 0.67 2112082 0.88 0.24
Watkinsville, GA&  1.05:1.40 1.2141.02 052 0.72 1.27:1.56 0,42 0.84 1.18:1.60 .56 0.74

Table 3 Pedormance satistics of simple modsl, WEPF, and the 5C5 curve number for validation sites (annual basiz).

Simple WEPP S5C5 Curve
Modal MNumber
Site n Measured — Average Average  Modsl Averags  Awverage  Model Average Average Model
Ayverage Ruralt Magnitude Efficiency Runolf Magnituda Efficiency  Runoff Magnitude  Efficiency
Hunof of Error of Error of Error
Sy, B il s E 072 237115 b [} 17.5=4.9 [:3 035
Castana, 1A i2 8604440 8.8843.82 1.49 0.81 9.5:4.6 21 oTe 12.5+5.0 26 0.59
Ganeva, MY 10 T.83+4.83 9.96+3.19 3.42 034 17.2:50 52 057 T.9:4.0 9.3 <068
Guthrie, OF 15 123648982 14494715 an 083 141274 28 a3 7.8:4.4 T.7 -0.35
Hodly Springs, MS 8 394421520 47.031+14.66 T80 0687 51.4x131 61 073 21 6281 341 -5.TE
Madison, S0 2] 5.20+2 68 G.H2+2 03 1.83 0.37 5135 1.8 046 6.9:5.8 a1 075
Morris, MN 10 3.05+4.50 38743192 1.53 [ ] 3.4431 1.3 [1¥:1] 3338 3.6 <023
Pendlaton, OH 2] 290+2 84 2 4641 84 1.68 L) ] F1:3.2 6.5 -0.87 .02 4 4.5 005
Prasque lla, ME 4 10724441 12834 44 3.65 0.0 7.5:4.8 3.8 052 8.9:4.4 4.8 019
THton, GA 8 1548£11.07 1627+8.43 3.43 084 231280 T7.B 0ar 13.517.92 15.5 -1.50
Watkinzville, GA 7 21.99+598 2539+3.09 451 .11 39.8:15.6 5.6 0.86 39.5:18.6 5.3 .88
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Figure 8. Ninety-five percent confidence intervals
for predictions of the simple runoff model on an
event basis.

5. On an event basis, our model performed worse than WEPP, except for the ME of one
site (Presque Isle). This is expected because WEPP used detailed breakpoint data
from tipping bucket rain gages to calculate storm shapes. WEPP validation runs
calculated rainfall duration, time to maximum intensity, and relative peak intensity. In
addition, WEPP has routines to calculate maximum ponding capacity (depression
storage) from random roughness and the slope of the flow surface. In our validation
runs, we always assumed a very low value for ponding capacity (0.1 cm), which may
have overpredicted runoff.

6. On an annual basis, our model usually performed better than WEPP in terms of
Average Magnitude of Error, and in many cases also in terms of Model Efficiency. Our
model performed better than the SCS curve number in all cases except the ME of two
sites, Presque Isle and Watkinsville.

Conclusions

1. We have found a simple alternative to the SCS curve number approach that accounts
for the seasonal variation of storm intensity.

2. Incorporating the new runoff/infiliration model in SALUS has the added advantage that
the tillage modifications of soil properties in SALUS will reflect on the simulation of
infiltration and runoff. SALUS simulates changes in ponding capacity and KsMacro
due to tillage, which in turn affect ponding, infiliration, and runofi.

3. Using cumulative rain vs. cumulative rain hours to estimate coefficient "a" in Eq. 1.is
approximate. A more universal solution is required for regions where long-term hourly
precipitation is not available.

4. Macropore saturated hydraulic conductivity is best calibrated, based on our
experience and the relevant literature (Ma et al., 1998; Risse et al., 1995a; Risse et al.,
1995b; Stagnitti et al., 1992).

Code Avalilability

The code that was used for model calibration and other related utilities are at
http://nowlin.css.msu.edu/software/pond90.
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